Wnt signalling and EphB-ephrin interactions in intestinal stem cells and CRC progression
نویسنده
چکیده
114 Eph receptors in intestinal cell positioning Eph receptors constitute the largest subfamily of transmembrane tyrosine kinase receptors described to date, with 14 members identified in mammals. Their ligands, the ephrins, are membrane-anchored proteins which are grouped into two subclasses: typeA ephrins (ephrinA1-ephrinA6), which are attached to the cell surface through a glycosylphosphatidylinositol (GPI) anchor, and type-B ephrins (ephrinB1ephrinB3), which contain transmembrane and intracellular domains (Figure 1). Depending on their sequence similarity and on their affinity for ephrins, Eph receptors are also classified into two groups. In general, EphA receptors (EphA1-EphA10) bind ephrinAs and EphB receptors (EphB1-EphB6) bind ephrinBs, yet promiscuity in their binding specificities has been described for some members. Upon cell-to-cell contact and ligand-receptor engagement, intracellular signalling is induced in a bidirectional fashion: ‘forward signalling’ starts in receptor-expressing cells, while ‘reverse signalling’ initiates in cells expressing the corresponding ligand (Figure 1). Eph–ephrin signalling regulates a number of cellular events during embryonic development such as cell migration, repulsion vs adhesion, and cell-to-cell communication. Most of these responses are achieved through the capacity of Eph–ephrin signalling to regulate actin cytoskeleton dynamics (reviewed in Pasquale, 2005).
منابع مشابه
LIG4 mediates Wnt signalling-induced radioresistance
Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repai...
متن کاملWnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells
In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating...
متن کاملWnt signaling in cancer stem cells and colon cancer metastasis
Overactivation of Wnt signaling is a hallmark of colorectal cancer (CRC). The Wnt pathway is a key regulator of both the early and the later, more invasive, stages of CRC development. In the normal intestine and colon, Wnt signaling controls the homeostasis of intestinal stem cells (ISCs) that fuel, via proliferation, upward movement of progeny cells from the crypt bottom toward the villus and ...
متن کاملClusterin, a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis.
Hyperactive Wnt signaling is a common feature in human colorectal cancer (CRC) cells. A central question is the identification and role of Wnt/β-catenin target genes in CRC and their relationship to genes enriched in colonic stem cells, since Lgr5+ intestinal stem cells were suggested to be the cell of CRC origin. Previously, we identified the neural immunoglobulin-like adhesion receptor L1 as ...
متن کاملEphB/EphrinB receptors and Wnt signaling in colorectal cancer.
Eph receptors and their ephrin ligands mediate cell repulsion during embryonic development. In the intestinal epithelium, EphB receptors are Wnt signaling target genes that control cell compartmentalization along the crypt axis. Recent findings have shown that this family of receptors are key players during colorectal cancer progression. Here, we review the current knowledge of the EphB/ephrinB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008